Problem IV
Smoothing weight

Assume that the weight production function is:
\[w_{t+1} - w_t = \alpha_1 [-w_t + \theta c_t] \]
where \(c_t \) is consumption, that the asset equation is
\[A_{t+1} - A_t = r_t A_t + y_t - p_t c_t \]
where \(y_t \) is income and \(p_t \) is price, that the utility function exhibits unit absolute risk aversion with respect to the index \(w_t \) of weight:
\[U(w_t) = -\exp(-w_t) \]
and that the discount factor is \(\beta \). Assume further that prices alternate between \(p=2 \) and \(p=4 \), that \(\theta=1 \), that the interest rate \(r=0.1 \) and that the discount factor \(\beta=1/1.1 \).

1. Find \(w_{t+1} - w_t \) for \(\alpha_1 = 0.6 \) and also for \(\alpha_1 = 0.8 \).

2. Find \(c_{t+1} - c_t \) for \(\alpha_1 = 0.6 \) and also for \(\alpha_1 = 0.8 \).

3. Assuming that \(y=10 \) in each period, solve for \(w_t \) and \(c_t \) in each period. (Hint: You may assume without proof that \(A_{t+2} = A_t \), thus discounted consumption over two consecutive periods must equal discounted income over the same interval. Also, you will need a calculator--the answers are not in general whole numbers)

4. Why does an increase in the rate of depreciation result in a decrease in the volatility of weight?